1. Write

$$
\sum_{n=1}^{5} \frac{(-1)^{n+1} 2^{n-1}}{n+1}
$$

This could be simplified to

$$
\sum_{n=1}^{5} \frac{(-2)^{n-1}}{n+1}
$$

or

$$
\sum_{n=0}^{4} \frac{(-2)^{n}}{n+2}
$$

2. The simplest method is to use algebra:

$$
\begin{aligned}
\sum_{k=1}^{n}(2 k+3) & =2 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 3 \\
& =2\left(\frac{n(n+1)}{2}\right)+3 n \\
& =n(n+1)+3 n \\
& =n^{2}+4 n
\end{aligned}
$$

Another method would be to find a formula for the sum of the odd integers (we did that in class), namely,

$$
\sum_{k=1}^{n}(2 k-1)=n^{2}
$$

Then apply this to the given sum:

$$
\begin{aligned}
\sum_{k=1}^{n}(2 k+3) & =\sum_{k=3}^{n+2}(2 k-3) \\
& =\sum_{k=1}^{n+2}(2 k-3)-(1+3) \\
& =(n+2)^{2}-4 \\
& =n^{2}+4 n
\end{aligned}
$$

3. When $n=1, \sum_{k=1}^{n} k(k+1)=1 \cdot 2$ and $\frac{n(n+1)(n+2)}{3}=\frac{1 \cdot 2 \cdot 3}{3}=2$. Therefore, the statement is true when $n=1$.

Now suppose that the statement is true when $n=m$, for some integer $m \geq 1$. We will show that it is true when $n=m+1$.

$$
\begin{aligned}
\sum_{k=1}^{m+1} k(k+1) & =\sum_{k=1}^{m} k(k+1)+(m+1)(m+2) \\
& =\frac{m(m+1)(m+2)}{3}+\frac{3(m+1)(m+2)}{3} \\
& =\frac{(m+1)(m+2)(m+3)}{3}
\end{aligned}
$$

Therefore, the statement is true for all $n \geq 1$.
4. Let $n=1$. Then $a_{n}=a_{1}=1$ and $3 \cdot 2^{n}-5=3 \cdot 2^{1}-5=1$. Therefore, the statement is true when $n=1$.
Now suppose that the statement is true when $n=k$, for some integer $k \geq 1$. We will show that the statement is true when $n=k+1$.

$$
\begin{aligned}
a_{n+1} & =2 a_{n}+5 \\
& =2\left(3 \cdot 2^{n}-5\right)+5 \\
& =\left(3 \cdot 2^{n+1}-10\right)+5 \\
& =3 \cdot 2^{n+1}-5 .
\end{aligned}
$$

Therefore, the statement is true for all $n \geq 1$.
5. Let $A=\{1,2,4,8\}, B=\{1,3,5,7\}$, and $C=\{2,3,5,7\}$ and let the universal set be $\{1,2,3,4,5,6,7,8\}$. Then
(a) $A \cup B=\{1,2,3,4,5,7,8\}$
(b) $B \cap C=\{3,5,7\}$
(c) $(A \cup B)-(A \cap B)=\{2,3,4,5,7,8\}$
(d) $(B \cap C)^{c}=\{1,2,4,6,8\}$
6. Suppose such a program ZERO exists. Then use it to build a program TEST as follows:

The program TEST will read a program P. It will then run ZERO with input P (as the program) and P (as the input to P). ZERO will determine whether P
will output 0 on input P. If ZERO reports "yes," then TEST will output 1 , and if ZERO reports "no," then TEST will output 0 . Now run TEST on input TEST and we will have a contradiction. If TEST should output 0 on input TEST, then ZERO will report "yes," so TEST will output 1. And if TEST should not output 0 on input TEST, then ZERO will report "no," so TEST will output 0.
7. (a) There are six possible choices:

$$
\left\{R_{1} R_{2}, R_{1} B_{1}, R_{1} B_{2}, R_{2} B_{1}, R_{2} B_{2}, B_{1} B_{2}\right\}
$$

(b) Of the six equally likely choices in part (a), 2 of them are of the same color $\left\{R_{1} R_{2}, B_{1} B_{2}\right\}$. Therefore, the probability is $\frac{2}{6}=\frac{1}{3}$.
8. (a) There are $\left\lfloor\frac{10000}{29}\right\rfloor=344$ multiples of $29,\left\lfloor\frac{10000}{37}\right\rfloor=270$ multiples of 37 , and $\left\lfloor\frac{10000}{89}\right\rfloor=112$ multiples of 89 . Furthermore, there are $\left\lfloor\frac{10000}{29.37}\right\rfloor=9$ multiples of $29 \cdot 37,\left\lfloor\frac{10000}{29 \cdot 89}\right\rfloor=3$ multiples of $29 \cdot 89$, and $\left\lfloor\frac{10000}{37 \cdot 89}\right\rfloor=3$ multiples of $37 \cdot 89$. There are $\left\lfloor\frac{10000}{29 \cdot 37 \cdot 89}\right\rfloor=0$ multiples of $29 \cdot 37 \cdot 89$. Using the Inclusion-Exclusion Principle, the number of numbers from 1 to 10000 that are multiples of 29,37 , or 89 is

$$
344+270+112-9-3-3+0=711
$$

(b) If 711 of the numbers are multiples of 29,37 , or 89 , then $10000-711=9289$ of the numbers are not multiples of 29,37 , or 89 . If we choose one at random, the probability is $\frac{9289}{10000}=0.9289$ that it is not a multiple of 29 , 37 , or 89 .
9. The total number of ways to choose any 3 marbles from the 10 is $\binom{10}{3}=120$. To choose 3 marbles of the same color is to choose 3 red marbles and 0 green marbles or 0 red marbles and 3 green marbles. The number of ways to do this is $\binom{5}{3}\binom{5}{0}+\binom{5}{0}\binom{5}{3}=10 \cdot 1+1 \cdot 10=20$. So the probability is $\frac{20}{120}=\frac{1}{6}$.
10. Expand as

$$
\begin{aligned}
(a+2 b)^{5} & =a^{5}+\binom{5}{1} a^{4}(2 b)+\binom{5}{2} a^{3}(2 b)^{2}+\binom{5}{3} a^{2}(2 b)^{3}+\binom{5}{4} a(2 b)^{4}+(2 b)^{5} \\
& =a^{5}+10 a^{4} b+40 a^{3} b^{2}+80 a^{2} b^{3}+80 a b^{4}+32 b^{5} .
\end{aligned}
$$

